Transition probability estimates for subordinate random walks

نویسندگان

چکیده

Let S n be a symmetric simple random walk on the integer lattice Z d . For Bernstein function ? we consider which is subordinated to Under certain assumption behaviour of at zero establish global estimates for transition probabilities The main tools that apply are parabolic Harnack inequality and appropriate bounds kernel corresponding continuous time walk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition probability estimates for long range random walks

Let (M,d, μ) be a uniformly discrete metric measure space satisfying space homogeneous volume doubling condition. We consider discrete time Markov chains on M symmetric with respect to μ and whose one-step transition density is comparable to (Vh(d(x, y))φ(d(x, y)) , where φ is a positive continuous regularly varying function with index β ∈ (0, 2) and Vh is the homogeneous volume growth function...

متن کامل

Sharp Probability Estimates for Random Walks with Barriers

We give sharp, uniform estimates for the probability that a random walk of n steps on the reals avoids a half-line [y,∞) given that it ends at the point x. The estimates hold for general continuous or lattice distributions provided the 4th moment is finite.

متن کامل

The volume and time comparison principle and transition probability estimates for random walks

This paper presents necessary and sufficient conditions for onand off-diagonal transition probability estimates for random walks on weighted graphs. On the integer lattice and on may fractal type graphs both the volume of a ball and the mean exit time from a ball is independent of the centre, uniform in space. Here the upper estimate is given without such restriction and two-sided estimate is g...

متن کامل

Finding Good Termination Probability for Random-walks

In this paper we study the survival probability of the followed ray in random walk global illumination algorithms. When the ray hits a surface, the survival probability is responsible for the dying of the ray, thus for finishing the walk. We examine the variance of the Russian roulette random walk estimator of gathering type, give an explanation of the formula and show visually the behavior of ...

متن کامل

Path-probability density functions for semi-Markovian random walks.

In random walks, the path representation of the Green's function is an infinite sum over the length of path probability density functions (PDFs). Recently, a closed-form expression for the Green's function of an arbitrarily inhomogeneous semi-Markovian random walk in a one-dimensional (1D) chain of L states was obtained by utilizing path-PDFs calculations. Here we derive and solve, in Laplace s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2021

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.201900065